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Quantum computing for data management
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DB Problems Solved Using QPUs

Of :
ICDE'24 tutorial
Reference DB problem Subproblem Formulation Intermediate Quantum
quantum algorithm computer
I. Trummer et al.,, | Query optimization Multiple query QUBO - Annealing-based
VLDB'16 optimization
T. Fankhauser et QAOA Gate-based
al., IEEE Access,
2023
M. Schonberger et Join ordering QAOA Gate-based &
al., SIGMOD23 annealing-based
N. Nayak et al,, QAOA, VQE Gate-based &
BiDEDE 23 annealing-based
T. Winker et al., — VQC Gate-based
BiDEDE '23
K. Fritsch et al., Data integration | Schema matching QUBO QAOA Gate-based &
VLDB'23 Demo annealing-based
T. Bittner et al., Transaction Two-phase locking QUBO - Annealing-based
IDEAS"20, OJCC management

S. Groppe et al.,
IDEAS'21




Roadmap

* Solving data management problems on quantum computers
" Problem benefit from quantum advantage, and practically useful
o Optimization problem
o Classical approaches have scaling limits
o Yet it does not require to load a large classical dataset
= Convert a data management solution to quantum algorithms
" Constraints of current quantum hardware

Data management —— QUBO » Quantum annealers
problem

Gate-based
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Research Opportunities

e DB problem reformulation
e Hybrid approach on classical and quantum computers
e Optimization given quantum computer constraints
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FPGA GPU NPU Gate-based QC Q Annealer

Quantum computer will enhance, not
replace, current HPC systems
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Data management for quantum computing
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Classical data vs. quantum data

* Classical data
" Information that is collected, processed, and stored with traditional computing
methods
= Stored and queried using DBMS such as relational databases, document stores,
graph databases, and vector databases

* Quantum data
" Information collected and processed using qguantum computing devices that
follow the rules of quantum mechanics to their advantage
= Represented by qubits
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I Unique features of quantum data

1. Quantum data is probabilistic

Superposition
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I What is a qubit (for us)?
* A qubit is a linear combination of basis states
[Y) = «|0) + B|1)

a,f € Cwith |a|? + |B]* =1
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I Unique features of quantum data

1. Quantum data is probabilistic

» a,  are called probability amplitudes
» When measuring, |a|* is probability of finding qubit in state |0)

[Y) = a|0) + B[1)

a,f € Cwith |a]? + |B]? =1

v =aloy+ g1y — A 0y or [1)




I Unique features of quantum data

2. Quantum data is fragile

Quantum noise results from unwanted coupling
environment

" Depolarizing

" Bit & phase flipping

" Amplitude & phase damping
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I Unique features of quantum data

3. Quantum data can be entangled

Entanglement
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I From quantum data to classical data

e Qubit fate (0 or 1) determined upon measurement
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From classical data to quantum data
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M. Weigold, J. Barzen, F. Leymann and M. Salm, "Expanding Data Encoding Patterns For Quantum Algorithms,” 2021 IEEE 18th
International Conference on Software Architecture Companion (ICSA-C), Stuttgart, Germany, 2021, pp. 95-101, doi:
10.1109/ICSA-C52384.2021.00025.



DB for QC: where to start?
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Landscape: data management for quantum computing
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Quantum
Computer

Quantum state

&8

Quantum device
(sensor, chip,...)

!

Classical — Classical
Computer - @ DBMS
=5

O
OO Simulate

Classical — Classical
Computer - @ DBMS
p =

&
I

Quantum
Database @



I | Classical data

Classical
Computer

Quantum device
(sensor, chip,...)

!
€

Classical
DBMS

24



I Il Classical-Quantum
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I Il Quantum

Fault-Tolerant Quantum Computing (FTQC) Era

Quantum
Computer

Quantum
Database @
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Il Quantum

e Quantum computing = Enormous computing power

Classical Computer

Computing power

1 1 0 1

Number of (qu)bits
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Il Quantum

e Quantum communication = Inherently safe communication




Il Quantum

e Quantum communication = Inherently safe communication




Il Quantum

e Quantum data is collected from quantum sensing systems; then
stored and processed via the quantum memory of a quantum

A B Learning physical state c Learnin hysical process
y y
Quantum-enhanced
——— Experiment —— IO p Quantum processing
Quantum Quantum + Measurement
lnformatlon memory . ' ' . . '
"Measure Classical
Classical processing

Classical
information

Physical world Sensor

Conventional

memory
011
100
10
011

Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li,Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard
Kueng, John Preskill,et al. 2022. Quantum advantage in learning from experiments. Science 376, 6598(2022), 1182-1186
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Noisy Intermediate-Scale Quantum (NISQ)

Quantum Computing in the NISQ era and beyond

John Preskill
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Noisy Intermediate-Scale Quantum (NISQ)
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Databases to the rescue

Can DB technologies boost the
development of quantum computing?
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Many possibilities

Can DB technologies boost the development of

guantum computing?

In-DB Tensor
Computation
Graph
analytics

Distributed
databases

Classical simulation

Error correction

Quantum network

Quantum

Scientific data

management experiments
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Classical simulation

* The process of emulating quantum computation, enabling
researchers to model and analyze quantum processes as if they
were operating on actual quantum hardware

e A powerful, foundational tool

" Random circuit |
~ sampling C@)
J Hybrid algorithms Ir—i Quantum algorithms ] Fault-tolerant

. algorithms verification

) (5
- New applications uncovering’ E

Xiaosi Xu, Simon Benjamin, Jinzhao Sun, Xiao Yuan, and Pan Zhang. 2023. A Herculean task:
Classical simulation of quantum computers. https://arxiv.org/abs/2302.08880
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Categorization of existing methods
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Kieran Young, Marcus Scese, and Ali Ebnenasir. 2023. Simulating Quantum Computations on
Classical Machines: A Survey. arXiv:2311.16505



Strong simulation vs. weak simulation

e Strong simulation
= Compute the output

Theorem 1 (Gottesman-Knill) Every (uniform family of) Clifford circuit(s), when applied to the
input state |0) = |0)®" and when followed by a Z measurement of the first qubit, can be efficiently
simulated classically in the strong sense.

* Weak simulation
= Sample from the output

Theorem 2 Let C be an arbitrary poly-sized Clifford circuit. Then there exists a poly-sized Clif-
ford circuit C" satisfying C|0) = C’|0) such that C' can be decomposed into three “rounds”:
(ROUND 1) apply Hadamard gates to an arbitrary subset of qubits; (ROUND 2) apply a poly-
sized circuit of NOTs and CNOTs,; (ROUND 3) apply a poly-size circuit of PHASEs and CPHASE:.
The circuit C' can be efficiently determined.

Theorem 3 Let C be an arbitrary n-qubit Clifford operation. Then there exist: (a) poly-size
circuits My and Mo composed of CNOT, PHASE and CPHASE gates and (b) a tensor product of
HADAMARD gates and identities H = H® ® I acting nontrivially on a subset S of the qubits,
such that C < MoHM;. Moreover, M, My and 'H can be determined efficiently.
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I Simulation problem: scalability

e 3-qubit GHZ state

\l@(\oom + [111))

e GH/Z state as a vector

1 1
§|H O OO0 O o O §|H
1 |

The basis states for 3 qubits are

000),1001),
101),1110),

010), 1011),1100),
111).

Amplitude of the vector 2™,
where n is the number of qubits
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Simulation problem: scalability

» Amplitude of the vector 2™*%
" nis the number of qubits
= 2% for the double-precision complex numbers
* Reaching the memory limits of today’s supercomputers

ARTICLES

namre
Pll}f SICS https://doi.org/10.1038/541567-018-0124-x

Characterizing quantum supremacy in near-term
devices

Sergio Boixo ™™, Sergei V. Isakov?, Vadim N. Smelyanskiy’', Ryan Babbush’, Nan Ding', Zhang Jiang3*,
Michael J. Bremner 53, John M. Martinis®” and Hartmut Neven'’

2.25 petabytes for 48
qubits (single precision)
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I Solutions to overcome the memory restriction

* Approximation

e Data compression
 Parallelization

e Distributed computing

e Unexplored direction: database technologies

41



Databases to the rescue

/We envision a classical-quantum simulation system (CQSS) with the following\
capabilities:

(i) automatically providing the most efficient simulation of the input circuit
by selecting optimal data structures and operations based on available
resources and circuit properties;

(ii) operating inherently out-of-core to support the simulation of large
circuits that exceed main memory capacity;

(iii) ensuring consistency to prevent data corruption and enabling recovery
in the event of large-scale simulation crashes; and

(iv) improving the entire simulation workflow, including parameter tuning,
data collection, and querying, exploration, and visualization.

- /
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I Qubit states & gates represented as tensor networks




I Tensor

* Multidimensional array

Tensor network diagram

® 6 o &

Scalar  Vector Matrix 3-way tensor
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I Tensor contraction

Cij = Z A By
k
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Quantum state as tensors

e 3-qubit GHZ state
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I Gates as tensors

Matrix product operator (MPO)

2-qubit gate:
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Quantum error mitigation via matrix product operators

NOiSe dS M PO Yuchen Guo' and Shuo Yangh**:*

e Consider noise modeled as gates (one example)

(b} u .‘TIIPU

Yiro “wro 1 & % Uiro

HIF — O —FOr

o Unmpro = 1 (€) Evpo X U© o Unppo

(d) gﬁdlm.[m Eg;;1]1={:r,|2| %E-Illz‘(}.lll fe— dyy —+|

. _D-[: i E_ ' 1 .
%, ,__D_ u, —OH %, — - YO == O

;_, Witlmj: ;_

[m] ' 12]

D=1

0
S
i
)

Figure 1. (Color online) (a) The schematic diagram of our QEM method based on MPO. We first use an MPO to represent
the noisy quantum circuit Umpo. Then we calculate the inverse noise channel EMEI,(.J, which is applied after If to compensate
for the error and to restore the ideal circuit 4'”. (b) Our variational MPO-inverse method. We calculate the inverse of an
MPO-represented quantum channel Uypo, which is parameterized as an MPO Hml,ﬂ with the same bond dimension D. (c)
Calculation of the inverse noise channel £, via MPO contraction and truncation methods, whose bond dimension is D’. (d)

A deep circuit is divided into m parts, each with dy layers. One may apply our QEM method on each part, where £ Mil"f.'J:[ g 18

truncated to D' = 1 and simulated by single-qubit gates.



I Simulating quantum circuits with tensor network

* The state after executing the circuits is obtained by contracting all
the tensors

49



Efficient tensor computation: database to the rescue

Push the simulation
workload to DBMSs

CREATE TABLE States(qubits text, areal float, aimg float);

WITH (SELECT A.quibits as Aqubits, B.qubits as Bqubits,
A.areal as Aareal, A.aimg as Aaimg,

B.areal as Bareal, B.aimg as Baimg

FROM States A, States B WHERE
SUBSTRING(A.qubits,1,k-1)=SUBSTRING(A.qubits,1,k-1)

AND SUBSTRING(A.qubits,k+1,n-k)=SUBSTRING(A.qubits,k+1,n-k)
AND A.qubits < B.qubits) AS J

(SELECT Aqubits, qgllxAareal+ql2*Bareal, qll*Aaimg+ql2*xBaimg)
UNION ALL (SELECT Bqubits, qg2l1*Aareal+q22*Bareal,
g21*Aaimg+q22*xBaimg)

Immanuel Trummer. 2024. Towards Out-of-Core Simulators for Quantum
Computing. In Proceedings of the 1st Workshop on Quantum Computing and
Quantum-Inspired Technology for Data-Intensive Systems and Applications (Q
Data '24). https://doi.org/10.1145/3665225.3665441

Compilation and Runtime

Data
Query Science JJ Simulation
Processing

Sampling

Matthias Boehm, Matteo Interlandi, and Chris Jermaine. 2023. Optimizing Tensor
Computations: From Applications to Compilation and Runtime Techniques. In
Companion of the 2023 International Conference on Management of Data. 53-59.
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Many possibilities

Can DB technologies boost the development of

guantum computing?

In-DB Tensor Classical simulation
Computation
Graph Error correction
analytics

Distributed Quantum network
databases

Scientific data Quantum
management experiments
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I We're hiring

e Postdoc
= Data lake & Al

" Federated learning

* PhD

= Data management for
gquantum Internet

Quantum Computing Quantum Internet

In 20+ labs and research groups

Qubit Research
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Contact: R.Hai@tudelft.nl

We're hiring

e Postdoc
" Federated learning
= Database & quantum computing

Quantum Internet Qubit Research

: QuTech In 20+ labs and research groups

PR
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Can DB technologies boost the
development of quantum computing?

Local Client Remote Client
Protocols Protocols Catalog
Manager

Admission Client Communications Manage

Control
Memory
Query Parsing and Authorization Manager

Query Rewrite

DDL and Utility Administration,
. an

Query Optimizer Monitoring &
— Processing Utilities

Dispatch

Sch::ldli Plan Executor

uling Replication and
Relational Query Processor (Section 4) pLoading
Services

Access Methods Buffer Manager
Batch Utilities

Process Lock Manager Log Manager Shared
Components and

Manager
(Section 2) Transactional Storage Manager (Sections 5 & 6) Utilities (Section 7)

Fig. 1.1 Main components of a DBMS. Qu a nt u m CO m p u ti n g
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