Towards Quantum Data Structures for Enhanced Database Performance

Tim Littau¹ Ziyu Li¹ Rihan Hai¹ VLDB 2024 Workshop: Quantum Data Science and Management

¹ Web Information Systems Department of Software Technology Delft University of Technology

QDSM 2024

Introduction

- Highly efficient solutions in classical data management
- Some problems remain challenging:
 - unstructured search
 - optimisation under uncertainty
- Quantum Computing not a "one-size-fits-all" solution
- How can these properties be harnessed to solve problems?

Leveraging Quantum Properties

Why Quantum Data Structures?

Implementing Quantum Algorithms

Translate data into the quantum realm

Define Quantum Data Structures

- Utilise Structural Properties
- Optimise Data Accessibility

Data Structures

- Bits
- Sequential and Deterministic
- Robust

Quantum Data Structures

- Qubits
- Quantum Parallelism
- Prone to Error / Probabilistic

Foundations: QRAM and QRAG

• QRAM:

- Quantum equivalent of classical RAM
- Store and retrieve data efficiently in quantum states
- Querying multiple data entries utilising superposition, crucial for the parallelism needed in Algorithms like Grover's

• QRAG:

- Extends QRAM by integrating in-memory quantum operations
- Data manipulation occurs during memory retrieval phase

• QPD:

- Simple data encoding using CNOT gates (QuAM)
- Grover's Algorithm applied to prepared registers
- Lower qubit requirements

Quantum Partitioned Database (QPD)

QPD components

Store database subsets

• Grover's Algorithm on $|i_j\rangle$ and $|x_{ij}\rangle$

Figure: Proposed architecture of QPD

QPD Architecture

Figure: Proposed architecture of QPD based System

- Data flow from classical to quantum system and back.
- Quantum registers handle subsets of database for parallel processing.

Circuit Design of QPD

Figure: QPD circuit design of a split into four subsets, {(5, 6), (2, 7), (1, 4), (3, 0)}. The first column of Hadamard-gates superposes all index registers into $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$

Circuit Design of QPD

Figure: QPD circuit design of a split into four subsets, {(5, 6), (2, 7), (1, 4), (3, 0)}. The first column of Hadamard-gates superposes all index registers into $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$

[0, 1, 2, 3, 4, 5, 6, 7]

Figure: Schematic example of the QPD split into four subsets, $\{(5, 6), (2, 7), (1, 4), (3, 0)\}$ and the corresponding index-value mapping

Figure: Schematic example of the QPD split into four subsets, $\{(5, 6), (2, 7), (1, 4), (3, 0)\}$ and the corresponding index-value mapping

Figure: Schematic example of the QPD split into four subsets, $\{(5, 6), (2, 7), (1, 4), (3, 0)\}$ and the corresponding index-value mapping

Figure: Schematic example of the QPD split into four subsets, $\{(5, 6), (2, 7), (1, 4), (3, 0)\}$ and the corresponding index-value mapping

Figure: Schematic example of the QPD split into four subsets, $\{(5, 6), (2, 7), (1, 4), (3, 0)\}$ and the corresponding index-value mapping

Quantum Circuit Overview

TUDelft

Figure: Algorithm circuit design as implemented in Qiskit. The columns with custom gates *QPD*, *Oracle* and *Diffusion* represent one iteration and are repeated $\sqrt{\frac{N}{d}}$ times.

- Index registers are initialized in superposition.
- Entanglement of Index and Data registers to create correct mapping
- Grover's Algorithm is applied to search the database.
- Results are measured and translated back to classical indices.

Vision for Quantum Data Management

Short-Term:

- Quantum-classical hybrid systems
- Development / optimisation of middleware layers
- Quantum data structure prototyping
- Long-Term:
 - Fully quantum-based data management systems
 - Include quantum networks and distributed quantum systems
 - Collaboration with hardware developers for tight integration

Future Applications:

- Quantum Databases
- Distributed Quantum Computing
- Specific data management applications

Summary

- Quantum Data Structures as an approach to tackle data management tasks
- QPD: possible solution and framework for other data structures
- Performance improvements only scratching the surface
- Challenging for real applications in NISQ era

Future Research Directions

Current Pursues:

- Quantum Internet for distributed resources
- Existing work on Middlewares like Q-CTRL¹
- First practical applications in finance and logistics

Outlook:

- Optimising quantum-classical interfaces.
- Quantum data structures for other applications
- Conceptual work on fully quantum databases

¹I. Faro, I. Sitdikov, D. G. Valiñas, F. J. M. Fernandez, C. Codella, and J. Glick (2023). "Middleware for Quantum: An orchestration of hybrid quantum-classical systems". In: 2023 IEEE International Conference on Quantum Software (QSW), pp. 1–8. DOI: 10.1109/QSW59989.2023.00011

Acknowledgments

Special thanks to Georgios Christodoulou for his contributions.

QDSM 2024 14/15

Questions?

- Thank you for your attention!
- Contact: T.M.Littau@tudelft.nl

